Parvatibai Chowgule College of Arts and Science

Autonomous

B.Sc. Semester End Examination, January 2022 Semester: I Subject: Mathematics Title: Basic Algebra (Core) Duration: 2 hours Max. Marks: 60 Instructions: 1. All Questions are compulsory. However internal choice is available. 2. Figures to the right indicate full marks 3. Justify all your answers.

Q1. Answer ANY THREE of the following:

- a) Determine if $(p \to (q \lor r)) \lor (p \to q)$ is a tautology, contradiction or contingency.
- b) Define Cartesian product of two sets and show that for any three sets, A, B and C,

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

- c) Give examples of the following:
 - i. A binary operation which has identity but no inverse.
 - ii. An injective function which is not surjective.
 - iii. An associative binary operation which is not commutative.
 - iv. A surjective function which is not injective.
- d) Find the gcd(574,483) and express it as 574x + 483y.

Q2. Answer ANY THREE of the following:

a) Find the inverse of
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

b) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$

- c) Solve the equation $3x^3 11x^2 + 8x + 4 = 0$, given that two of its roots are equal.
- d) Find the equation whose roots are the roots of $x^3 6x^2 + 11x 6 = 0$ each increased by 1

(12)

(12)

- a) Using rules of inference show that the following argument is valid:
 If it rains, then I will take leave.
 If it is hot outside, then I will go for a shower.
 Either I will not take a leave or not go for a shower.
 Therefore, either it does not rain or it is not hot outside.
- b) (i) Let *R* be the relation on \mathbb{Z} given by *aRb* if and only if $a \equiv b \pmod{5}$. Show that *R* is an equivalence relation and hence find all the distinct equivalence classes.

OR

(ii) Let $f: A \to B$ and $g: B \to C$ be both bijective functions. Show that the composite function $g \circ f$ is bijective and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Q4. Answer the following:

a) Solve ANY ONE of the following systems of linear equations:

i)
$$2x - 2y + 5z + 3w = 0$$
$$4x - y + z + w = 0$$
$$3x - 2y + 3z + 4w = 0$$
$$x - 3y + 7z + 6w = 0$$
ii)
$$2x + 3y + 2z = 5$$
$$3x - 5y + 5z = 2$$
$$x + 2y + z = 3$$

3x + 9y - z = 4

b) Determine two matrices P and Q such that PAQ is in the normal form

$$\begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix}, \text{ where } A = \begin{bmatrix} 3 & 2 & -1 & 5\\ 5 & 1 & 4 & -2\\ 1 & -4 & 11 & -19 \end{bmatrix}$$

Q5. Answer ANY TWO of the following:

- a) Solve the reciprocal equation $6x^5 + x^4 43x^3 43x^2 + x + 6 = 0$.
- b) Solve the polynomial equation $x^5 + 6x^4 3x^3 58x^2 54x + 36 = 0$ given that one of its roots is $\sqrt{6} 2$.
- c) Solve by Cardan's method $x^3 18x 35 = 0$.

(12)

(12)