Parvatibai Chowgule College of Arts and Science

Autonomous

B.Sc. Semester End Examination, January 2022

Semester: I
Subject: Mathematics
Title: Basic Algebra (Core)
Duration: 2 hours
Max. Marks: 60
Instructions: 1. All Questions are compulsory. However internal choice is available.
2. Figures to the right indicate full marks
3. Justify all your answers.

Q1. Answer ANY THREE of the following:
a) Determine if $(p \rightarrow(q \vee r)) \vee(p \rightarrow q)$ is a tautology, contradiction or contingency.
b) Define Cartesian product of two sets and show that for any three sets, A, B and C, $A \times(B \cup C)=(A \times B) \cup(A \times C)$
c) Give examples of the following:
i. A binary operation which has identity but no inverse.
ii. An injective function which is not surjective.
iii. An associative binary operation which is not commutative.
iv. A surjective function which is not injective.
d) Find the $\operatorname{gcd}(574,483)$ and express it as $574 x+483 y$.

Q2. Answer ANY THREE of the following:
a) Find the inverse of $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$
b) Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$
c) Solve the equation $3 x^{3}-11 x^{2}+8 x+4=0$, given that two of its roots are equal.
d) Find the equation whose roots are the roots of $x^{3}-6 x^{2}+11 x-6=0$ each increased by 1

Q3. Answer the following:
a) Using rules of inference show that the following argument is valid:

If it rains, then I will take leave.
If it is hot outside, then I will go for a shower.
Either I will not take a leave or not go for a shower.
Therefore, either it does not rain or it is not hot outside.
b) (i) Let R be the relation on \mathbb{Z} given by $a R b$ if and only if $a \equiv b(\bmod 5)$. Show that R is an equivalence relation and hence find all the distinct equivalence classes.

OR

(ii) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be both bijective functions. Show that the composite function $g \circ f$ is bijective and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Q4. Answer the following:
a) Solve ANY ONE of the following systems of linear equations:
i) $\quad 2 x-2 y+5 z+3 w=0$

$$
\begin{aligned}
& 4 x-y+z+w=0 \\
& 3 x-2 y+3 z+4 w=0 \\
& x-3 y+7 z+6 w=0
\end{aligned}
$$

ii) $\quad 2 x+3 y+2 z=5$
$3 x-5 y+5 z=2$
$x+2 y+z=3$
$3 x+9 y-z=4$
b) Determine two matrices P and Q such that $P A Q$ is in the normal form $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$, where $A=\left[\begin{array}{cccc}3 & 2 & -1 & 5 \\ 5 & 1 & 4 & -2 \\ 1 & -4 & 11 & -19\end{array}\right]$

Q5. Answer ANY TWO of the following:
a) Solve the reciprocal equation $6 x^{5}+x^{4}-43 x^{3}-43 x^{2}+x+6=0$.
b) Solve the polynomial equation $x^{5}+6 x^{4}-3 x^{3}-58 x^{2}-54 x+36=0$ given that one of its roots is $\sqrt{6}-2$.
c) Solve by Cardan's method $x^{3}-18 x-35=0$.

